Calculus and Finite Difference Operators

نویسنده

  • KENT McCORMICK
چکیده

This paper shows that the naturally induced discrete differentiation operators induced from a wavelet-Galerkin finite-dimensional approximation to a standard function space approximates differentiation with an error of order 0(h2d+2), where d is the degree of the wavelet system. The degree of a wavelet system is defined as one less than the degree of the lowest-order nonvanishing moment of the fundamental wavelet. We consider in this paper compactly supported wavelets of the type introduced by Daubechies in 1988. The induced differentiation operators are described in terms of connection coefficients which are intrinsically defined functional invariants of the wavelet system (defined as L2 inner products of derivatives of wavelet basis functions with the basis functions themselves). These connection coefficients can be explicitly computed without quadrature and they themselves have key moment-vanishing properties proved in this paper which are dependent upon the degree of the wavelet system. This is the basis for the proof of the principal results concerning the degree of approximation of the differentiation operator by the wavelet-Galerkin discrete differentiation operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

Certain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators

The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...

متن کامل

Discontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations

This paper develops a discontinuous Galerkin (DG) finite element differential calculus theory for approximating weak derivatives of Sobolev functions and piecewise Sobolev functions. By introducing numerical one-sided derivatives as building blocks, various first and second order numerical operators such as the gradient, divergence, Hessian, and Laplacian operator are defined, and their corresp...

متن کامل

حل عددی معادله جریان یک بعدی آب در خاک با استفاده از روش عملگرهای مرجع

In this paper, a numerical solution is presented for one-dimensional unsaturated flows in the subsurface. Water flow in the subsurface, however, is highly nonlinear and in most cases, exact analytical solutions are impossible. The method of reference-operators has been used to formulate a discrete model of the continuum physical system. Many of the standard finite difference methods and also th...

متن کامل

حل عددی معادله جریان یک بعدی آب در خاک با استفاده از روش عملگرهای مرجع

In this paper, a numerical solution is presented for one-dimensional unsaturated flows in the subsurface. Water flow in the subsurface, however, is highly nonlinear and in most cases, exact analytical solutions are impossible. The method of reference-operators has been used to formulate a discrete model of the continuum physical system. Many of the standard finite difference methods and also th...

متن کامل

Generalized Time Scales

Calculus on time scales was established in 1988 by Stefan Hilger. It includes both the classical derivative and the forward difference operator as special cases. It also includes Riemann integrals and finite sums as inverse operations. However, it does not include the Jackson q-difference operator on R and the Jackson q-integral on R. Also, it does not include neither the difference operator on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010